704/Elc. 22-23 / 61716

B.Sc. Semester-VI Examination, 2022-23 ELECTRONICS [Honours]

Course ID: 61716 Course Code: SH/ELC/603/DSE-3(T)

Course Title: Numerical Techniques

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any **three** of the following: $1 \times 3 = 3$
 - a) An approximate value of e is 2.7195518 and its true value is given by 2.71821828. Find relative error.
 - b) Round-off the following numbers to four decimal places: 3.3465827, 5.375829, 54.2549757 and 0.00457328.
 - c) When Newton's backward interpolation formula is used?
 - d) In Numerical integration, what should be the number of intervals to apply Simpson's one-third rule and Simpson's three-eighth rule?

- e) How many significant figures are there in π ?
- f) Round-off the number 0.987250 correct to four significant figures and find the percentage error.
- 2. Answer any **three** of the following: $2 \times 3 = 6$
 - a) Prove that $E = 1 + \Delta$ where Δ is forward difference operator and E is shift operator.
 - b) Prove that $\Delta^3 y_0 = y_3 3y_2 + 3y_1 y_0$.
 - c) Compare Gauss-Siedel and Gauss elimination method.
 - d) Construct the forward difference table from the following tabulated function:

х	0	1	2	3	4	5
f(x)	12	15	20	27	39	52

- e) What are eigenvalue and eigenvector of a square matrix?
- f) Round off the numbers 865250 and 27.46235 to four significant figures and compute absolute, relative and percentage error in each case.
- 3. Answer any **two** of the following: $5 \times 2 = 10$
 - a) Find a root of the equation $x^3 4x 9 = 0$ using Bisection method correct to three decimal places.

[Turn over]

704/Elc.

b) Solve the following equations by Gauss elimination method:

$$2x + y + z = 10$$
, $3x + 2y + 3z = 18$, $x + 4y + 9z = 16$.

- c) Prove that
 - i) $\nabla = 1 E^{-1}$ and
 - ii) $\Delta = E\nabla = \nabla E = \delta E^{\frac{1}{2}}$,

where the symbols have their usual meanings.

$$2\frac{1}{2} + 2\frac{1}{2} = 5$$

d) Find the polynomial for the following data by Newton's backward difference formula:

x	0	1	2	3
f(x)	-3	2	9	18

4. Answer any **one** of the following:

$$6 \times 1 = 6$$

- a) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule and (ii) Simpson's 3/8th rule and then compare the results with its actual value. 3+3=6
- b) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0. Find y for x = 0.1 by Euler's method.

c) Solve the following system of equations by Gauss-Seidal method:

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$.
